Biphasic binding kinetics between FepA and its ligands.

نویسندگان

  • M A Payne
  • J D Igo
  • Z Cao
  • S B Foster
  • S M Newton
  • P E Klebba
چکیده

The Escherichia coli FepA protein is an energy- and TonB-dependent, ligand-binding porin that functions as a receptor for the siderophore ferric enterobactin and colicins B and D. We characterized the kinetic and thermodynamic parameters associated with the initial, energy-independent steps in ligand binding to FepA. In vivo experiments produced Kd values of 24, 185, and 560 nM for ferric enterobactin, colicin B, and colicin D, respectively. The siderophore and colicin B bound to FepA with a 1:1 stoichiometry, but colicin D bound to a maximum level that was 3-fold lower. Preincubation with ferric enterobactin prevented colicin B binding, and preincubation with colicin B prevented ferric enterobactin binding. Colicin B release from FepA was unexpectedly slow in vivo, about 10-fold slower than ferric enterobactin release. This slow dissociation of the colicin B.FepA complex facilitated the affinity purification of FepA and FepA mutants with colicin B-Sepharose. Analysis of a fluorescent FepA derivative showed that ferric enterobactin and colicin B adsorbed with biphasic kinetics, suggesting that both ligands bind in at least two distinct steps, an initial rapid stage and a subsequent slower step, that presumably establishes a transport-competent complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA.

Ferric enterobactin is a catecholate siderophore that binds with high affinity (Kd approximately 10-10 M) to the Escherichia coli outer membrane protein FepA. We studied the involvement of aromatic amino acids in its uptake by determining the binding affinities, kinetics and transport properties of site-directed mutants. We replaced seven aromatic residues (Y260, Y272, Y285, Y289, W297, Y309 an...

متن کامل

Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA.

Siderophores and colicins enter bacterial cells through TonB-dependent outer membrane proteins. Using site-directed substitution mutagenesis, we studied ligand recognition by a prototypic Escherichia coli siderophore receptor, FepA, that binds the iron chelate ferric enterobactin and colicins B and D. These genetic experiments identified a common binding site for two of the three ligands, conta...

متن کامل

Concerted loop motion triggers induced fit of FepA to ferric enterobactin

Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in sev...

متن کامل

Surface loop motion in FepA.

Using a lysine-specific cleavable cross-linking reagent ethylene glycolbis(sulfosuccimidylsuccinate) (Sulfo-EGS), we studied conformational motion in the surface loops of Escherichia coli FepA during its transport of the siderophore ferric enterobactin. Site-directed mutagenesis determined that Sulfo-EGS reacted with two lysines, K332 and K483, and at least two other unidentified Lys residues i...

متن کامل

Recognition of ferric catecholates by FepA.

Escherichia coli FepA transports certain catecholate ferric siderophores, but not others, nor any noncatecholate compounds. Direct binding and competition experiments demonstrated that this selectivity originates during the adsorption stage. The synthetic tricatecholate Fe-TRENCAM bound to FepA with 50- to 100-fold-lower affinity than Fe-enterobactin (FeEnt), despite an identical metal center, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 35  شماره 

صفحات  -

تاریخ انتشار 1997